Your Grace And Mercy

In this day and age, many people are filled with worry about their future. They live stressed out, wondering, “What’s going to happen if I lose my job?”, “how am I going to handle it if my loved one doesn’t make it?”, or even “my parents are getting older, how can I take care of them and my own family at the same time?”. As I settle into another year of this thing called life, I have made up my mind that I’m not going to worry or fret anymore. I will trust in God’s grace to be there at every stage of my life, to help me do whatever I need to do.

Remember, God’s grace is what saves us, but that’s not all. His grace is His enabling power. His grace will give you the strength, wisdom and favour to accomplish what you could not normally accomplish on your own. His grace is sufficient for whatever you need in your future. Hallelujah!

Today, if you’re in a difficult marriage, if you’re raising a child that’s going astray or if you’re facing a sickness, one thing you can count on is that the grace of God will be there. Receive it today by faith, and let Him empower you to walk through the difficulty, into a place of victory in Jesus’ name!

“But whatever I am now, it is all because God poured out His special favour on me—and not without results. For I have worked harder than any of the other apostles; yet it was not I but God who was working through me by His grace.” (1 Corinthians 15:10, NLT).

Pray With Me
Yahweh, thank You for Your grace and mercy upon my life this past year. Father, thank You for empowering me to rise above every obstacle. God, I trust that You are moving me forward into victory in this next year of life. In Jesus’ name, Amen.

Smiling Page Boy at Royal Wedding That Captured the Heart of Christ

Millions of Americans forsook their precious Saturday morning sleep for the chance to tune into a grand moment in history.

Whether you’re a fan of the royal family or not, I think we can all agree that this live event was something to behold.

Some argue the simplicity of two hearts being joined together as everyday fodder.

Others, like myself, were perhaps caught off guard by the magnitude and solitude of the ceremony.

The sights and sounds set the stage for a fairytale moment in time. When, for a brief encounter, we saw a piece of our common selves lain in the vows between Prince Harry and Meghan Markle.

As I marveled at the procession, my heart was enthralled at the sight of a little page boy.

Upon entering the castle and hearing the orchestrated music thunder through the century old walls, it was obvious this child was having the time of his life.

I wondered if the thousands of viewers on this particular live feed had just experienced the delightful joy that was found in his innocent face of wonder.

My throat tightened a bit and I was puzzled at the puddle of tears that had formed in the corner of my right eye.

Within seconds, I determined that I would store away the picture of a toothless smile- to use as a reminder of the essence of God. A mental note that could bring us all back to ground level- to recapture the awe of the simple rugged cross that held a remarkable man with an extraordinary plan for the world.

Click here to watch the clip!

 

Has Nigeria Become the World’s Junk Yard of Abandoned and Failed Mega Projects worth Billions?

Dim1, N. U., Okorocha2, K. A., & Okoduwa3 V. O.

The Nigerian construction industry is mostly concerned with the development and provision of projects such as roads, bridges, railways, residential  and commercial real estates, and the  maintenance necessary for the socio-economic developments contributes immensely to the Nigerian economic growth (Bureau of Statistics, 2015). Butcher and demmers (2003) described projects as an idea which begins and ends by filling a need. However, a project fails when its idea ends without meeting the needs and expectations of its stakeholders.

Nigeria Has Become the World’s Junk – Yard of Abandoned and Failed Projects worth Billions of Naira!

Hanachor (2013), revealed that projects form part of the basis for assessing a country’s development. However,  a damming  report from the Abandoned Projects Audit Commission which was set up by the Ex-President Goodluck Jonathan in 2011 revealed that 11,886 federal government projects were abandoned in the past 40 years across Nigerian  (Abimbola, 2012). This confirmed the assertion by Osemenan (1987) “that Nigeria has become the world’s junk –yard of abandoned and failed projects worth billions of naira”.

Abandoned projects including building and other civil engineering infrastructure development projects now litter  the  whole of Nigeria.

Physical projects do not only provide the means of making life more meaningful for members of the community where the projects are located, successful  projects also  result in  empowerment and collective action towards self improvement (Hanachor, 2013).  

This Issue of Abandonment Has Been Left Without Adequate Attention for Too Long, and Is Now Having a Multiplier Effect on the Construction Industry in Particular and the Nigeria’s National Economy as a Whole. (Kotngora, 1993)

PROJECT FAILURE

Project Failure might mean a different thing to different stakeholders. A project that seemed successful to one stakeholder may be a total failure to another (Toor and Ogunlana, 2008). Some stakeholders, more especially the project users and some private owners, think of failed projects as a situation where a completed building project collapsed, a situation where by a completed dam project stopped working after few days of completion, or a completed road project that broke down after few months of completion. Other experienced stakeholders, such as engineers  and  architects  conform to the iron triangle by Atkinson (1999) which states that the most strategically important measures of project failure are “time overrun”, “cost overrun”, and “poor quality”.

Turner (1993) noted that a project fails when the project specifications are not delivered within budget and on time;   the project fails to achieve its stated business purpose; the project did not meet the pre-stated objectives; the project fails to satisfy the needs of the project team and supporters; and the project fails to satisfy the need of the users and other stakeholders. Lim and Mohamed (1999) cited in Toor and Ogunlana (2009) clarified that there are two possible view points to project failure namely; the macro-level and the micro-level. They further explained that the macro view point reviews  if the original objectives and concepts of the project was met. Usually the end users and the project beneficiaries are the ones looking at the project failure from the macro view point, where as the project design team, the consultants, contractors, and suppliers review projects from a micro view point focusing on  time of delivery, budget, and poor quality.  

In the early 1990s, the failure as well as the success of any project was determined by the project duration, monetary cost, and the performance of the project (Idrus, Sodangi, and Husin, 2011). Belout and Gauvrean (2004), also confirmed that the project management triangle based on schedule, cost, and technical performance is the most useful in determining the failure of a project. Moreover, a project is considered as an achievement of specific objectives, which involves series of activities and tasks which consume resources, are completed within specifications, and have a definite start and end time (Muns and Bjeirmi 1996, cited in Toor and Ogunlana, 2009). Reiss (1993) in his suggestion stated that a project is a human activity that achieves a clear objective against a time scale. Wright (1997) taking the view of clients, suggested that time and budget are the only two important parameters of a project which determines if a project is successful or failed. Nevertheless, many other writers such as Turner, Morris and Hough, wateridge, dewit, McCoy, Pinto and Slevin, saarinen and Ballantine all cited in Atkinson (1999), agreed that cost, time, and quality are all success as well as failure criteria of a project, and are not to be used   exclusively.

FACTORS OF PROJECT FAILURE

Cookie-Davies (2002) stated the difference between the success criteria and the failure factors. He   stated that failure factors are those which contributed towards the failure of a project while success criteria are the measures by which the failure of a project will be judged. The factors constituting the failure criteria are commonly referred to as the key performance indicators (KPIs).  

Time   and Cost Overrun

The time factor of project failure cannot be discussed without mentioning cost. This is because the time spent on construction projects has a cost attached to it. Al-Khali and Al-Ghafly, (1999); Aibinu and Jagboro, (2002) confirmed that time overrun in construction projects do not only result in cost overrun and poor quality but also result in greater disputes, abandonment and protracted litigation by the project parties. Therefore, focus on reducing the Time overrun helps to reduce resource spent on heavy litigation processes in the construction industry (Phua and Rowlinson, 2003). Most times, the time overrun of a project does not allow resultant system and benefits of the project to be taking into consideration (Atkinson, 1999). Once a project exceeds the contract time, it does not matter anymore if the project was finally abandoned or completed at the same cost and quality specified on the original contract document, the project has failed. Furthermore, Assaf and Al-Hejji, (2006) noted that time overrun means loss of owner’s revenue due to unavailability of the commercial facilities on time, and contractors may also suffers from higher over heads, material and labour costs.

Poor quality/Technical Performance

The word “Performance” has a different meaning which depends on the context it is being used and it  can also be referred to as quality. Performance can be generally defined as effectiveness (doing the right thing), and efficiency (doing it right) (Idrus and Sodangi, 2010). Based on this definition of performance, at the project level, it simply means that a completed project  meets fulfilled the stakeholder  requirements in the business case.

CAUSES OF PROJECT FAILURE

A lot of research studies have investigated the reasons for project failures, and why projects continue to be described as failing despite improved  management. Odeh and Baltaineh, 2002; Arain and   Law, 2003; Abdul-Rahman et al., 2006; Sambasivan and Soon, 2007; all cited in Toor and Ogunlana, 2008, pointed out the major causes of project failures as Inadequate procurement method; poor funding and availability of resources; descripancies between design and construction; lack of project management practices; and communication lapses

The contract/procurement method

A result obtained from two construction projects which were done by the same  contractor but using different procurement methods showed that rework, on the design part which occurs when the activities and materials order are different from those specified on the original contract document, makes it difficult for the project to finish on the expected time (Idrus, Sodangi, and Husin, 2011). This is as a result of non-collaboration and integration between the design team, contractor, and tier suppliers. The rework on the design portion has a huge impact on  project failure leading to the time overrun.  The traditional method of procurement has inadequate  flexibility  required  to facilitate late changes to  the project design once the design phase of the construction project has been concluded.

Nigerian most widely used procurement method is the traditional method of procurement (design-bid-construct) which has been confirmed to be less effective to successfully delivery of a construction project (Dim and Ezeabasili, 2015). And, the world bank country procurement assessment report (2000) cited in Anigbogu and Shwarka, (2011) reported that about 50% of projects in Nigeria are dead even before they commence because they were designed to fail.

The way the construction projects are contracted, in addition to the way the contracts are delivered, contributes to the causes of projects failure. Particularly, among the methods of project contracting is lump-sum or a fixed-price contracting method, in which the contractor agrees to deliver a construction project at a fixed price. The fixed-price contract can be low-bid or not however, once the contract cost has been agreed upon the contract award, it cannot be changed. And, contractors are expected to honor and deliver the contract agreement, failure to do so can result  in a  breach of contract which can result in the contractor being  prosecuted.  

Awarding a contract to an unqualified personnel also contributes to project failures. When a contractor places more emphasis on money and the mobilization fee after a construction project has been initiated instead of getting the right workforce and skilled professionals that will execute the project. Instead the workforce chosen will often not be base on competence and required skills rather it will be based on availability. Moreover, poor strategy and planning by contractors who have overloaded with work  also contributed to one of the causes of project failure.

Poor funding/Budget Planning

A lot of public projects in the Nigerian construction industry failed as a result inadequate funding, and the difference between the national annual budget and the budget actual released. Most of the Nigerian public projects are signed  even before the actual release of the national budget. The difference in budget of the contracted project and the actual budget release can get the contracted company stuck as a result of inflation of prices, scarcity of construction material at the time of the budget release and mobilization to site. Also  un-planned scope of work which can be as a result of the contractor working on another contract when he is called back  to  mobilization to start work. Moreover, poor budget planning is a regular mistake made by some contractors by not undertaking feasibility assessments  before starting the design. The construction project should be planned according to the available resources and not according to the unrealistic expectations a  client has in mind.

Discrepancies  Between the Design and Construction

Limited  collaboration between the contractors, engineers, and the architect results in discrepancies between the project designs and construction on site, and further leads to rework. Changes on a project designs, and changing to the scope of work in the middle of construction processes on site can be dangerous, and can lead to time overrun, increase in cost, and most of all can lead to abandonment. Moreover, many cases have been seen where the designs from the architects are not buildable  on site, while   In some cases, most contractors are unable to adequately specify the scope of work for the construction processes on site. Therefore any default on the design by the architect can be an opportunity for the contractor to make more money which might cause the project duration to exceed the time specified on the contract document.

RESEARCH METHODOLOGY

This research starts with a general reasoning or theory which says that the major cases of project failure in the Nigerian construction industry are defined based on time overrun and cost overrun. The findings from the data analysis will help on the decision to accept the theory or not. The research data was collected from the progress report for the month ending of October, 2015 published by the Nigeria of Federal Ministry of works on thirty-nine on-going highway construction projects at the South-South geopolitical zone. The table 1 below shows the information on the data collected which comprises of the project title, contract Number, project description, the contractor that was awarded the projects, the date of project commencement, date of completion and the extended date if any. The scheduled time for each project was specified as follows: project commencement date labeled as “a”,   project completion date labeled as “b”, and the extended date labeled as “c”.

Table 1: The analyzed data on the highway project at the South-South zone in Nigeria.
Table 1: The analyzed data on the highway project at the South-South zone in Nigeria.

image2

image3

image4

image5

image6

image7

image8

DATA ANALYSIS

The data analysis was done with the use of Microsoft excel. The analysis started by obtaining the number of days between the date of commencement of each project and the date of completion to show the duration of each highway project. And, the number of days between the project completion date and the extension date showed the time-overrun. The project duration and the extended days were obtained with the use of NETWORKDAYS function in Microsoft Excel which calculates the number of working days between two dates excluding weekends and any dates identified as holidays.

The standard deviation between the specified project duration for each highway projects and the extended days was calculated to obtain the extent to which each highway project contract failed on its time of delivery. This was denoted as the degree of failure. The table 1 above showed the projects ranking which was done based on the degree of failure of all the highway projects. The highway projects that were ranked from one to sixteen have low degree of failure and are represented with green color, while the rest are those with high degree of failure and are represented with red color.

FINDINGS

The findings made showed that the successfully completed highway projects have no extended days or time overrun, and the successful on-going highway projects are still on schedule and have no extended days unlike the on-going highway projects that have already failed as a result of the extended dates. Other projects have been abandoned because they have exceeded the delivery date as specified on the contract document, and have no extended date of completion. Thus, no work is going on.

Figure 1: Abundance of failed highway projects at south-south zone, Nigeria.
Figure 1: Abundance of failed highway projects at south-south zone, Nigeria.

Figure 2: On-going failed highway projects
Figure 2: On-going failed highway projects

Figure 2 above showed that 14% of highway projects are still on-going projects because they have not exceeded the original date of completion as specified on the contract document. However, they are heading towards failure because they have been given an extended date of completion which can be as a result of some critical activities running behind schedule, causing delay on the critical path network of the projects. Moreover, the other 86% completely failed because they have exceeded their completion date specified on the contract document.

Figure 3: Successful on-going highway projects
Figure 3: Successful on-going highway projects

The figure 3 above showed that 63% of the successful highway projects are still on-going because they have not exceed their completion dates, and they are not yet completed. However, those on-going highway projects might end up as failed projects as a result of poor funding, discrepancy between the design and the construction on site, and conflict between the construction parties or stakeholders.

“Say what you will do, and do what you said” or “Say as you will do it, and do it as you said”

CONCLUSION AND RECOMMENDATION

The idea of knowing what a failed project is, the factors and the causes is very important in project management. Success in project management can neither be achieved nor measured without the knowledge of project failure, its factors, and causes in the Nigerian construction industries. This work has shown that project failure is as a result of exceeded time of delivery, cost overrun, and poor quality. However, the analysis was only done based on exceeded time of project delivery because of the nature of the data collected.

This work suggested a few approaches to help reduce the number of failed projects in the Nigerian construction industry if properly implemented. Firstly, Having good collaboration between the project stakeholders involved in a construction project at the early stage of project conception is most important in order to accomplish the project objectives, and deliver the project on time, within budget, and quality specified on the original contract document (Othman, 2006).

Secondly, Adopting the ISO 9000 technique which is used for quality management will also help in achieving a successful project delivery. This technique states “ say what you will do, and do what you said” or “say as you will do it, and do it as you said”. This technique is not an indication of high quality but it promotes control and consistency which leads to specialization, and improved productivity and quality. Also, adopting the principles of lean construction will help to reduce waste within the construction and stream-line activities in order to improve the on-time delivery of projects.

Thirdly, Learning from the precedent failed projects, how those projects failed, and the reason for their failures. This will help the project manager  to plan and mitigate the risks of project failures in the future. And, finally, more seminars and workshops will help to educate and enlighten clients (the federal government representatives), users, contractors, engineers, and architects on what is project failure, the factors that contributes to abundant failed projects, and their causes.

REFERENCE

Abimbola, A. (Novermber 24, 2012). About 12,000 Federal Projects Abandoned across Nigeria. Premium times (November 16, 2015). Retrieved from www. Premium timesng.com/news/108450-about-12000-federal-projects-abandoned-across-nigeria.html.

Al-Khali, M.I and Al-Ghafly, M.A. (1999). Important Causes of Delays in Public Utility Projects in Saudi Arabia. Construction management and Economics, 17, 647-655

Aibinu, A.A and Jagboro, G.O. (2002). The Effects of Construction Delays on Project Delivery in Nigeria Construction Industry. International journal of Project management, 20(8), 593- 599.

Anigbogu, N. and Shwarka, M. (2011). Evaluation of Impact of the Public Procurement Reform Program on Combating Corruption Practices in Public Building Project Delivery in Nigeria. Environtech Journal, 1(2). 43-51.

Assaf, S. and Al-Hajji, S. (2006). Causes of Delays in large Construction Projects. International Journal of Project Management, 24, 349-357.

Atkinson , R. (1999). Project management: Cost, time, and quality, two best guesses and a Phenomenon, it’s time to accept other success criteria. International Journal of project Management, 17(6), 337-342.

Belout, A and Gauvrean, C. (2004). Factors Influencing the Project Success: The impact of human resource management. International Journal of project Management, 22, Pp. 1-11.

Butcher, N. and Demmers, L. (2003). Cost Estiumating Simplified. Retrieved from www.librisdesign.org.

Cookie-Davies, T. (2002). The Real Success Factors on Projects. International Journal of Project management, 20(3), 185-190.

Dim, N.U. and Ezeabasili, A.C.C (2015). Strategic Supply Chain Framework as an Effective Approach to Procurement of Public Construction Projects in Nigeria. International Journal of Management and Susutainability, 4(7), 163-172.

Hanachor, M. E. (2012). Community Development Projects Abandonment in Nigeria: Causes and Effects. Journal of Education and Practice, 3(6), 33-36.

Idrus, A., Sodangi, M., and Husin, M., H. (2011). Prioritizing project performance criteria within client perspective. Research Journal of Applied Science, Engineering and Technology, 3(10), 1142-1151.

Idrus, A. and Sodangi, M. (2010). Framework for evaluating quality performance of contractors in Nigeria. International Journal of Civil Environment and Engineering. 10(1), 34-39.

National Bureau of Statistics (January, 2015). Nigerian Construction Sector Summary Report: 2010-2012.

Kotangora, O. O. (1993). Project abandonment, Nigerian Tribune.

Osemenan, I. (1987). Project Abandonment. New Watch Magazine, Vol. 1, pp. 15.

Othman, M.,R. (2006). Forging main and sub-contractor relationship for successful projects. Retrieved from http://rakanl.jkr.gov.my/csfj/editor/files/file/projek/lessonslearned/MAIN&SUB_2.pdf

Phua, F.T.T and Rowlinson, S. (2003). Cultural Differences as an Explanatory Variable for Adversarial Attitude in the Construction Industry: The case of HongKong. Construction Management and Economics, 21, 777-785.

Reiss, B. (1993). Project Management Demystified. London: E and FN Spon Publishers.

Toor, S. R. and Ogunlana, S. O. (2008).Problems causing Delay in Major Construction Projects in Thailand. Construction management and Economics, 26, 395-408.

Toor, S. R. and Ogunlana, S. O. (2008). Critical COMs of Success in Large-Scale Construction Projects: Evidence from Thailand constructuction industry. International Journal of Project management, 26(4), 420-430.

Toor, S. R. and Ogunlana, S. O. (2009).Beyound the “Iron Triangle”: Stakeholder perception of key performance indicators (KPIs) for large-scale public sector development projects. International Journal of Project management, doi: 10.1016/j.ijproman.2009.05.005.

Toor, R. and Ogunlana, S. (2009). Construction Innovation: Information, process, management. 9(2), PP. 149-167.

Turner, J. R. (1993). The Handbook of project-Based Management: Improving the process for achieving strategic objective. London, McGraw-Hill.

Wright, J., N. (1997). Time and Budget: The twin imperatives of a project Sponsor. International Journal of Project Management, 15(3), 181-186.

Professor Pavel Matousek – Laser Man

Using micro-SORS for non-destructive analysis of painted layers in Art

Professor Pavel Matousek – Laser Man
Professor Pavel Matousek – Laser Man

Professor Pavel Matousek, a Science and Technology Facilities Council (STFC) Senior Fellow and Chief Scientific Officer of Cobalt Light Systems Ltd, has pioneered revolutionary techniques for analysing the chemical composition of materials and co-founded a highly successful spin-out company. He has helped develop and commercialize award-winning laser technologies that detect liquid explosives at airports, rapidly check the quality of pharmaceutical products, and that may one day non-invasively diagnose breast cancer. Pavel states:

“I Am Very Excited about What I Do and Driven to Answer Questions in Front of Me, Unravel Complex Problems and Deliver Something Useful to Society.”

STFC science writer James Doherty meets the Laser Man.

Pavel, what first got you interested in physics?

I became fascinated by the stars and Universe while growing up in the Czech Republic. I joined an astronomy society at secondary school and it became clear I wanted to study physics. I got very interested in laser physics during my MSc at the Czech Technical University in Prague. It is a very dynamic field.

When did you arrive at Rutherford Appleton Laboratory (RAL)?

I joined as a research associate in 1991, and went on to complete my PhD in ultra-fast Raman Spectroscopy at RAL, awarded by the Czech Technical University. I’ve been here almost 25 years to the day.

So what is Raman Spectroscopy?

It is a technique that involves shining a laser beam at the surface of a material, and then observing the colour of light scattered from the point of illumination. This typically provides information about the chemical composition of the material’s surface. C.V. Raman observed the effect in 1928 and subsequently won a Nobel Prize.

You pioneered a technique called Spatially Offset Raman Spectroscopy (SORS): What is it and how does it differ from normal Raman Spectroscopy?

“We couldn’t have developed the SORS technique without the instrumentation and long term research continuity available at the Central Laser Facility at RAL”

SORS is a technique that we stumbled across in the Ultrafast Spectroscopy Laboratory (ULTRA) by chance. We had assumed that photons could only be detected at the illumination point but we were wrong. Some photons migrate sideways through the material then emerge adjacent to the illumination point. As these photons have interacted with molecules deeper inside the medium, they provide information about internal chemical make-up: SORS probes deeper into the material. And the further you move from the illumination point, the deeper you see into the medium. The process

involves large photon migration distances, often extending to several centimetres or more. This came as a big surprise.

“SORS involves probing at one location and detecting at another. Our minds, and those of others, were constrained by our perception of how the Raman Spectroscopy process worked but once we made this serendipitous discovery, we quickly realised it had potential major applications.”

What kind of applications?

“The Range of Potential Applications for Sors Is Staggering.”

We immediately realised SORS could determine the chemical make-up of substances by non-destructive means. This could have applications in bio-medicine, chemistry, security, forensics, heritage, and beyond. But we first focused on pharmaceuticals, and developed novel ways for analysing the chemical make-up of manufactured drugs.

We swiftly filed 8 patents, which became the basis of our company Cobalt Light Systems.

Cobalt Light Systems is perhaps best known for its airport security scanners. Can you describe how these work and their impact to  passenger travel?

Security scanners represent the second generation of technology developed by Cobalt. To date there are around 400 operational units in 70 airports across Europe and Asia. They are used to scan traveller essentials, such as medicines or baby milk, and compare their chemical make-up to a database of potentially explosive substances. Suspicious substances are automatically identified and flagged. For example, the technology avoids passengers having to drink liquids (e.g. baby milk) in front security officer to prove they are not dangerous, which is clearly safer and more hygienic. It has also contributed to new legislation, and is expected to lead to a relaxation of the complete ban of taking liquids on board a plane in the future.

The scanners are currently the size of a microwave oven but right now we are launching a SORS handheld device. This should have further applications for first responder teams called to spillages of unknown substances and fire fighters attending chemical fires.

Pavel Matousek Pioneered a Technique Called  Spatially Offset Raman Spectroscopy (SORS)

How did STFC help with this process?

First off, we used instrumentation at STFC’s Central Laser Facility to demonstrate the basic capability to detect the SORS subsurface signal. Once we made the discovery in 2004, we worked closely with STFC’s Technology Transfer Office SIL (formerly CLIK) and Business and Innovations (BID) to develop, optimise and protect our ideas. There was a complex path to navigate from discovery, to optimising SORS, building a prototype, and ultimately to securing investment in 2008. BID/SIL coordinated the company at all levels and provided the support necessary to achieve this goal.

“My story illustrates the national and international importance of STFC. If its determination to deliver impact on science was absent, the chain from a fundamental discovery to Cobalt Light Systems’ product would have been broken. STFC responded appropriately at every stage. And this is just one example of how STFC contributes to the UK’s know-how economy.”

What are you working on currently?

I’m focused on developing novel non-invasive medical screening techniques, including diagnosing bone disease such as osteoporosis (jointly with STFC’s Prof Tony Parker and University College London’s Prof Allen Goodship), and I’m working with Professor Nicolas Stone of Exeter University on non-invasive breast cancer screening.

In addition, I’m collaborating with Consiglio Nazionale delle Ricerche in Italy to apply the SORS technology to objects of art on microscales. For example, we can scan different layers of paint to determine compositional information essential in restoration and preservation of artefacts.

How will the medical applications benefit patients?

Patient benefit could be enormous. Current diagnosis techniques for osteoporosis are around 60-70% accurate as they sense only mineral content. SORS on the other hand has a high specificity for mineral and collagen content – both of which determine bone strength – and so holds considerable promise for providing improved diagnostic accuracy. SORS could also be used to classify breast or prostate tumours as malignant or benign without needle biopsy. This would reduce patient stress and save medical provider costs.

However, medical problems are challenging as the human body is complex and variable. These applications are probably still 7-10 years away.

Why do you do this research?

This is where my passion and interest lies – I’m very excited about what I do.

“As You Push the Boundaries of Technology and Make New Discoveries, the End Goal Always Changes. This Is the Nice Thing about Science.”

How to Cope with a Mis-Sold Job

How to cope with a mis-sold job

Everyone knows a story about a smart and talented professional  who has lost his or her passion for a role, who no longer looks forward to going to the office yet remains stuck without a visible way out.  Getting on the career ladder is a great thing, you start off at the bottom and work your way up, but sometimes you can get stuck and do not even realize it.

“One in Five Employees Claim They Were Mis-sold Opportunities When They Joined Their Organisation – Kelly Global Workforce Index (Kgwi).”

Commenting on the findings,  Debbie Pettingill, Director, Kelly Services UK and Ireland said

“Employee retention will become an increasing challenge for employers as we move out of the recession. As we move into a more candidate driven market, this trend is likely to accelerate. Our findings indicate that this problem is being exacerbated by the misrepresentation of job role or company culture at the interview stage, leading to the dissatisfaction of new hires.”

Most of us know what we are trying to escape a “mis-sold” job  resulting in a  narrowly defined career, inauthentic or unstimulating work, numbing corporate politics, and  perhaps  blackmail including direct  threats of being used as a scapegoat. A job where you are both overlooked and underappreciated.  One may ring true for some of you.

“Fewer than Half of Uk Employees Are Happy with the Way Their Careers Are Progressing According to New British Research.”

Why Would A  Company or Person Block Your Move?

Well, this could be because of his or her personal insecurity  i.e. as the team works well, why rock the boat? Comfort zone: sometimes the team gets too comfortable? Golden child syndrome: you’re working your butt off and your sponsor or other senior  is reaping the recognition from your amazing deliverables?

Working a job you don’t like can leave you feeling stuck, forgotten by God, and asking yourself questions like:

Why hasn’t God opened another door for me yet?  

Why is God not moving?  

Why would God leave me here in this job I hate?

But the truth is God has not left you. He’s not holding back on you. When you feel God is silent, that’s exactly when He’s moving!  Your situation does not change God. He still loves you and is with you no matter what.

Instead of looking at our situation from a perspective of fear and worry, we need to look at it through faith and hope.

What Can You Do About it?

Don’t fret, you can handover your work or completely leave the organisation and still stay sane. You might worry that announcing your intentions will cause your company grief, but ultimately you have to do what’s best for you no matter what!

Think and pray long and hard about how you’re going to drop this bombshell  as you  will need  to give notice. A  sound method is required to overcome the assault and possible backlash – including of course more prayer and fasting.

So how are you going to approach it? What’s your reasoning going to be?  How are you going to get them to understand exactly why you’re doing this?  What do you need to do in order to prepare for the big day?

Easy, you’re going to read this guide.

Strategy 1 – Remote Working Arrangement

This could  be a great approach if 80% of your  work can be  undertaken  remotely. However, while there is a very logical argument to be made in favor of working from home, many people equate remote work to a lack of productivity and laziness. These people do not realize that the switch from an office to working from home can actually lead to significant increases in productivity.

Strategy 2 – What’s in It for Me?

What’s in it for me?   That question sounds a little selfish, doesn’t it?  Maybe you  aren’t being compensated fairly, or you’re not happy with the effort vs return.  When you know your client and team needs you and you’re willing to stay for a price, don’t mess around.  Give them the real number or offer that will make it worth your while to stick it out for awhile.

Strategy 3  –  The Budget Cut

The re-structuring.  The downsizing.  The dreaded budget cut.  Whatever name you want to give it, this  can be terrifying  for a lot of professionals.  However,  if you’re  already thinking about leaving, so maybe it doesn’t have to be such a scary thing.  In fact, maybe it can be  extremely  positive for both  parties.

Strategy 4  –  The Ease Out

Still feeling weary  about leaving the organization.  Propose easing yourself out of the post.  Pick a time frame, maybe four weeks or so, and come up with a plan for slowly taking yourself out of the position.  This also allows you some time to slowly ramp down your time commitment.

Strategy 5 –  Burning Bridges in the Industry  

“Sometimes it’s about networking and being nice to people and not burning any bridges – but remembering to draw line where you must.”

There’s no harm in an early exit from a job you never plan to mention again or an interim role where you have clearly agreed on a start and finish date.  But if your manager is well connected to your industry you should try to leave on a good note.  Why? Because it’s a small world and the next hiring manager may put in a call to his or her former colleague  (a.k.a., your new manager) to get the unofficial scoop.  It happens, so if you’re going to leave anyway then try to fulfill your end of the deal.

Strategy 6  – Get Moving Fast

Imagine, for example, that you were hired to help the company manage multiple programmes and projects  across the globe, but a recent change in leadership means all efforts moving forward will be focused locally.

If you’re spending your days just trying to find ways to be productive or are undertaking a role you never signed up for, you have every right to pursue new opportunities. Of course, the first course of action should normally be to  discuss this with your manager to see if there are other roles you can take on. But if you know that this isn’t going to happen in the new world, get moving fast.

Strategy 7  – Your Dream Job Awaits

“When you’re being interviewed, always treat the interview as a 50-50 thing,” says Andy Dallas, a director at Robert Half International, recruitment consultants. “Ask what you can expect to be doing in your first week, month and three months. Ask what a successful year looks like.”

Dream jobs don’t come every day. So, if you have a chance at yours, take it quickly  and congratulate yourself for being strong enough to leave when you were unhappy.

Strategy 8 – Remeber to Be Patient  

We will not always be in a job we desire. Maybe you are fresh out of school and are working a job that has nothing to do with the degree you just earned. Maybe you are in a situation where you are working at a job where you are overqualified, overworked, and fed up. Maybe, for the most part, you love your job but get discouraged by the mundane tasks that take up time from doing the aspects of your job you love most.    

“Humble yourselves before the Lord, and he will exalt you.” – James 4:10 NIV

Here’s the thing: God will still use this season to grow, develop, and prepare you. Any season that humbles us is preparing us for what God has next.

Any thoughts to share?

How To Deliver On The Promise of MegaProjects

Due to the large scale and outlook attached to them, mega-projects have a large opportunity for failure. Typically, the failure begins at the outset of the project, whether that be due to poor justification for the project, misalignment among stakeholders, insufficient planning, or inability to find and use appropriate capabilities.

Underestimated costs and overestimated benefits often offset the baseline for assessing overall project performance. This is why it is important for organizations to first establish social and economic priorities before even considering what projects will answer their needs. Once social and economic priorities are established, only then can a project be considered. Selecting projects must be fact-based and transparent in order to ensure accountability with stakeholders and the public.

Successful Megaprojects Must Have Robust Risk-analysis or Risk-management Protocols

It’s also important to maintain adequate controls. Successful megaprojects must have robust risk-analysis or risk-management protocols and provide timely reports on progress relative to budgets and deadlines. Typically, progress is measured on the basis of cash flow, which is less than ideal as data could be out of date and payments to contractors do not correlate construction progress. Instead, project managers should deliver real-time data to measure activity in the field. For example, cubic meters of concrete poured relative to work plans and budgets.

construction-646914_1920

Overall, improving project performance requires better planning and preparation in three areas: doing engineering and risk analysis before construction, streamlining permitting and land acquisition, and building a project team with the appropriate mix of abilities.

Project developers and sponsors should put more focus into pre-planning such as engineering and risk analysis before the construction phase. Unfortunately, most organizations and sponsors are reluctant to spend a significant amount of money on early-stage planning because they often lack the necessary funds, they are eager to break ground and they worry the design will be modified after construction is underway, making up-front designs pointless.

However, it’s proven that if developers spend three to five percent of capital cost on early-stage engineering and design, results are far better in terms of delivering the project on-time and on-budget. This is because through the design process, challenges will be addressed and resolved before they occur during the construction phase, saving both time and money.

It’s not unusual for permits and approvals to take longer than the building of a megaproject. However, if developers look to streamline permitting and land acquisition, that would significantly improve project performance. Best practices in issuing permits involve prioritizing projects, defining clear roles and responsibilities and establishing deadlines.

smoke-258786_1920

In England and Wales, developers applied these approaches to cut the time needed to approve power-industry infrastructure from 12 months to only nine months. On average, timelines for approval spanned four years throughout the rest of Europe. Likewise, the state of Virginia’s plan to widen Interstate 495 in 2012 was able to cut costs and save hundreds of homes thanks to land acquisition planning by a private design company.

Investors and Owners Must Take an Active Role in Creating the Project Team

When it’s all said and done, projects cannot deliver the best possible return on investment without a well-resourced and qualified network of project managers, advisers and controllers. Investors and owners must take an active role in creating the project team.

It’s not enough to have a vague overview of what the project might look like in the end. Instead, it’s necessary to review risks and costs and draft a detailed, practical approach to tackle various issues. An experienced project manager cannot do it all alone. The project team must include individuals with the appropriate skills, such as legal and technical expertise, contract management, project reporting, stakeholder management, and government and community relations among others.

Failure to Properly Plan for These Projects Could Have a Negative Impact on Society

While mega-projects are important in filling economic and social needs, failure to properly plan for these projects could have a negative impact on society.  Take  Centro Financiero Confinanzas (Venezuela), the eighth tallest building in Latin America at 45 stories, located in the financial district of Venezuela’s capital, Caracas for example.

t

To those unaware of its history, the Centro Financiero Confinanzas is actually home to over 700 families, a “vertical slum” that is a truly fascinating example of reappropriation of space in an urban environment. An ironic symbol of financial failure that was intended to represent the unstoppable march of Venezuela’s booming economy.

It’s much more than an unbuilt building, bridge or tunnel, failed mega-projects are a blow to the economic growth and social improvements of communities around the world.

Small Projects Often Mean Greater Innovation

Small projects often embody more innovation than larger more costly or high profile ones.

Innovation is a wide concept that includes improvements in processes, products and services. It involves incorporating new ideas which generate changes that help solve the needs of a company and so increase its competitiveness. That’s hardly big news. But what may be surprising to some is that innovation has itself, well, innovated and it isn’t what it used to be.

New materials and energy, design approaches, as well as advances in digital technology and big data, are creating a wave of innovation within the construction industry. These new ideas are increasingly often tested and proven on smaller and agiler projects. Investing time and money is well spent on  these  ideas and technical improvements can then be used on large-scale developments.

Here are  three exciting small projects:

Vanke Pavilion - Milan Expo 2015 / Daniel Libeskind
Vanke Pavilion – Milan Expo 2015 / Daniel Libeskind

Vanke Pavilion - Milan Expo 2015 / Daniel Libeskind
Vanke Pavilion – Milan Expo 2015 / Daniel Libeskind

VANKE PAVILION Milan, Italy
VANKE PAVILION
Milan, Italy

1. Vanke Pavilion – Milan Expo 2015

The  corporate pavilion for Vanke China explores key issues related to the theme of the Expo Milano 2015, “Feeding the Planet, Energy for Life”.

Situated on the southeast edge of the Lake Arena, the 800-square meter pavilion appears to rise from the east, forming a dynamic, vertical landscape.

The original tiling pattern would have resulted in thousands of ceramic tiles of different sizes and shapes. The resulting complexity and lack of repetition could have led to high costs and a longer erection time.

Working with Architects Studio Libeskind, Format Engineers  (Engineering Designers with backgrounds in structural engineering, coding, mathematics, and architecture) changed the pattern from thousands of different tiles to less than a dozen and  simplified the  backing structure generating  huge cost savings. Format Engineers also proposed ‘slicing’ of the building and then fabrication of  the primary structure of steel ribs using  low tech flat steel plate elements.  These were then used in a series of long span portalised frames reminiscent of the ribs and spars in traditional boat building  resulting in a  column-free area for the display of Chinese Cultural Heritage.

The frame was built to a budget and without difficulty ahead of the neighboring Expo buildings.

Building Size
12 meters high
740 mq gross floor area (exhibition, service & VIP levels)
130 mq roof terrace

Architect:  Studio Libeskind

Engineer:  Format Engineers

Oxford Brookes Rain Pavilion
Oxford Brookes Rain Pavilion

Oxford Brookes Rain Pavilion
Oxford Brookes Rain Pavilion

Oxford Brookes Rain Pavilion
Oxford Brookes Rain Pavilion

2.  Oxford Brookes Rain Pavilion

The Rain Pavilion is an urban forest sculpture forming the front entrance to Oxford Brookes University’s Architecture Faculty.

“Rain Pavilion artwork is a sensory experience for the community.”

The complex form required extensive wind modeling and comprehensive structural analysis within a generative 3d model. This was allied with Format Engineers in-house code for the self-organization of voids and their subsequent redistribution.

.At each stage of the design process different modeling and analysis techniques were used to exploit the form and to optimise the structure. The considerable challenges posed by the slenderness of the structure and its dynamic behavior under wind were resolved by combining Computational Fluid Dynamics (CFD)  (a branch of  fluid mechanics  that uses numerical analysis and algorithms to solve and analyze problems that involve  fluid  flows) with a generative design environment. Conceptual design introduced the ideas of tubular stems and folded steel canopies, both of which were  perforated by circular holes arranged to allow the interplay of light and water through the structure. The voids were generated using a self-organizing process.

Grasshopper  (a graphical algorithm computer 3-D modeling tool)  was used  to produce a mesh that could include the voids in both the stems and the petals.

The Rain Pavilion is designed to celebrate the sound of rain, and the noise of water interacting with different sections of the installation is part of the experience of passing through it. The structure has a design life of five years and can  be transported to other locations.

Architect:  Oxford Brookes University, Oxford, UK

Engineer:  Format Engineers

KREOD Pavilion
KREOD Pavilion

KREOD Pavilion
KREOD Pavilion

KREOD Pavilion
KREOD Pavilion

3.  KREOD Pavilion

The KREOD pavilions were first erected on the London Greenwich Olympic site in 2012.  Easily rearranged, three pod-like pavilions were formed with a wooden structural framework comprised of an open hexagonal composition.

Standing three meters tall, each double-curved wooden shell enclosed a footprint of 20 square meters,  totaling 60 square meters. A  waterproof tensile membrane sealed the interior from the elements fully portable with demountable joints,  the individual components can be  stacked for efficient transportation.

Chun Qing Li the architect required a temporary exhibition or function space that could be erected and demounted mostly by hand and by untrained staff. The quality of finish needed to  echo that of handmade furniture and had to be low cost and quick to erect. The continuously changing double curved form of the enclosure meant that in theory, every nodal connection was  different. A conventional bolted solution would have cost hundreds of pounds per fixing. Format Engineers  suggestion of a ‘reciprocal’ jointed timber grid shell required standard  bolts which equated to a fraction of the normal cost. It also allowed the structure to be built from simple and light flat timber elements.

The structure used Kebony timber throughout, a sustainable alternative to tropical hardwood. As this material had not previously been used in a structural context Format Engineers undertook load testing of the material and the connections at the University of Cambridge. The timber was fabricated using CNC routing (a computer controlled cutting machine)  allowing a highly accurate fit between members and basic  erection on site.

Architect:  Chun Qing Li  

Engineer:  Format Engineers

 

9 Suggestions for Overcoming Barriers to Good Design When Using Modern Methods of Construction (Mmc)

The term ‘Modern Methods of Construction’ (MMC)  embraces a range of technologies involving various forms  of prefabrication and off-site assembly.

MMC is increasingly regarded as a realistic means of  improving quality, reducing time spent on-site, improving  on-site safety and addressing skills shortages in the  construction of UK housing.

Bridge Crossing Modern Design
Bridge Crossing Modern Design

The variety of systems now available potentially allows the  designer enough choice to sidestep problems deriving  from constraints posed by the use of any one method.  MMC systems, from closed-panel timber framed  systems to bathroom pods are a palette from which  designers can make choices. They are not necessarily  stand-alone solutions that anticipate all the needs of  an individual site and can be mixed and matched  as appropriate.

These limitations are not obstacles to achieving the good design in MMC-based schemes, but may hinder  the incorporation of more complex and innovative  types of MMC from which greater overall benefits  may be obtained  which  are considered under the  following headings:

1. COST UNCERTAINTY

There is no doubt that, given products of comparable  performance the key issue in purchases of MMC construction  systems is the price. At present not enough is known  about the potential costs of using volumetric and  closed panel systems to enable confident specification  at an early date. This inhibits designers from exploring  the full potential of MMC systems. This is particularly true of the less repetitive,  small, one-off scheme, where a smaller margin  of benefits is gained from using MMC. The principal  barrier to the uptake of MMC, therefore, seems  to be the perception of cost uncertainty with respect to using more complex systems.  Without doing substantial project-specific research,  consultants and their clients simply do not know with  enough degree of certainty how much the volumetric or  closed panel systems are likely to cost, and what  would be the savings to overall project costs produced  by potential speed gains to offset against increased  capital expenditure.

This is due to the complexity of assessing the ratio of  cost of repetitive elements where pricing is relatively  straightforward to the cost of adjusting elements or  building in another method for the abnormal condition.  Decisions to use innovative systems are likely to be  made once designs are well progressed to enable  teams to be more certain of costs. This can increase  the potential for change or result in design compromise  as the designer attempts to incorporate the specific  limitations of a particular system in their design.

In an attempt to improve this situation, the MMC consultant and or clients  could  pull together a  directory of MMC  expanded to include cost comparison data. The huge  range of variables involved inevitably makes this  difficult, but a database of current construction cost  information  would be an  invaluable resource.

Contemporary Building Facade
Contemporary Building Facade

2. PLANNING PROCESS AND EARLY COMMITMENT  TO A SYSTEM

The time it can take to obtain planning permission has  obvious implications both for project cost but also, in  some circumstances, for architectural  design innovation.

Most of the more complex types of MMC have an  impact on dimensioning, the choice of external finish  and detailing may have some effect on the buildings  mass. Therefore,  the construction system should be  chosen prior to a planning application to avoid  abortive work, redesign or amendment, or even  resubmission for planning permission.

However,  developers  whose money is at risk, frequently hold  off deciding on the construction technique until the last  practicable moment, in order to get any advantage from  fluctuations in material or component pricing.

Given the potential for lengthy duration of planning  applications, this means that there is little incentive to  prepare initial designs for planning with a prior decision  to incorporate MMC firmly embedded. In cases where  the developer has a financial or business link with the  supplier, this is less likely to be the case. As the majority  of commercial or  residential developments involve some kind of arrangement with a developer, agreement on construction systems is often left to the stage after planning.

3. TIME INVESTMENT

Another very significant factor is the time investment required at  the early stages of projects. This is needed to develop the design when the project is still at risk. There is a  direct relationship between the scale and complexity of  MMC component and the amount of time required to  develop a design at an early stage.

The introduction of advanced or complex MMC  techniques into the design process is potentially costly  to the design team. A significant amount of research is  needed to explore alternative systems, to obtain  verification of suppliers’   credentials, investigate  mortgage and insurance issues, visit previous sites,  talk to system suppliers, obtain technical performance  guidelines, understand junctions and interfaces, coordinate  other consultants, obtain building control input  and so on.

For a consultant, the only way of investing in this  research is either through timely payment of increased  fees by a visionary understanding client or through the anticipation of increased future productivity through repetition when a  project is phased, or large enough, or likely to be  followed by another similar project.

The potential of learning a system and then being able  to repeat lessons learned efficiently is a powerful  incentive for both client and consultant. By contrast, HTA’ s project at Basingstoke is an example  of a phased project with a three to four-year duration allowed the design team to repeat  various elements of the design, and the manufacturer to  develop improved solutions to technical and supply  problems.

HTA’ s project at Basingstoke
HTA’ s project at Basingstoke

4. INSUFFICIENT COMMUNICATION

Improved dialogue at the outset of the  project is  vital if design quality is to be  maximised. Constraints and opportunities implicit within  a particular system are more easily incorporated into  design if partners communicate pre-planning.  Increased early communication can be fostered through  improved long-term partnering relationships.

Clients  should also partner with a range of suppliers and  architects so that choice and flexibility is not restricted.

5. INEXPERIENCE

Generally, the inexperienced client or design team will  have to do more research, with the result  that there is likely to be significant design development  without a specific system being incorporated.

This is a  disincentive to using a more complex system involving a  higher proportion of MMC, where early decision making  and knowledge of a system’ s capabilities have a decisive influence on the nature of the architecture.  However,  encouraging the take up  of MMC through the use of a dedicated funding mechanism may  assist clients  in  finding time for  research into suitable MMC techniques.

Dome Construction Berlin
Dome Construction Berlin

6. SUPPLIER’S ROLE

Site capacity  studies and early stage pre-planning design studies  could be undertaken directly by system suppliers  on behalf of clients, cutting out the usual procedure  of commissioning design work by independent  consultants.

7. ASSUMPTIONS

There are a  number of assumptions that  are generally held about certain types of MMC that may  have been valid at one time but are no longer true today.  There is a need for reliable and up to date information  comparing system criteria, performance data, timescales, lead in times, capacity, construction time,  sequencing issues, limitations, and benefits.

Therefore  it would be helpful if a forum  for discussion and experience exchange was set up.

8. DEMONSTRATING THE BENEFITS OF MMC

There is still a large amount of skepticism about the  need to go very far down the line with MMC. This is  reflected in the acceptance of the desirability of  maintaining or indeed enhancing the pool of traditional  craft skills throughout the UK.

A balanced view is that there is a demonstrable need  for the wider use of MMC which is recognized by both  industry and government.  The best way for clients  and the public generally to  become more confident and knowledgeable about the  quality of design achievable through MMC is to see it  demonstrated.

9. FINANCIAL INCENTIVES

There is no doubt that spreading the burden of  investment through the life of a project helps to ensure  a higher standard of specification and hence quality. In  the Netherlands, a ‘ Green Financing’   system has been  developed by the Dutch government that provides  favorable loan finance when certain sustainable  standards are reached. In the UK, the Gallions HA  has  pioneered  a study of this, based on a scheme in  Thamesmead, ‘ the Ecopark project’.

Eco Park is an eco-friendly business park built on the False Bay coast. This business park is at the cutting-edge of sustainable design and offers a unique working environment in a secure, well-managed facility.
Eco Park is an eco-friendly business park built on the False Bay coast. This business park is at the cutting-edge of sustainable design and offers a unique working environment in a secure, well-managed facility.

Project Manager or Scapegoat?

You Need to Stop Pointing That Finger

Big Project Failures Claim Their Victims in Spectacular Fashion

You’ve just been assigned a high visibility failing project  and  you’re working round-the-clock to get the work to the client on time, despite the fact that the job bears barely any resemblance to the project  you initially discussed. The  scope keeps creeping, the risk  and issue alerts are coming in thick and fast, the project is already  two months  past the original deadline, the clients are getting antsy even though they’re yet to provide you with various key pieces of information in order to baseline the project.  Is this your chance to shine  and showcase your skills?

If You Don’t Know Where You’re Going, You Will Probably End up Somewhere Else – Laurence J. Peter

If you manage to turn the project around and the project is successful, you will attract many fathers. However, if the project fails, you will probibly be  offered up as the  sacrificial lamb (scapegoat),  there is absolutely no way around it.  A  high percentage of projects fail to deliver useful results, that’s a  fact.

Project managers are  regularly blamed for schedule delays and cost overruns for projects they inherit by no fault of there own, however, in most cases, the fault for such issues rarely lies with just one person.

Sufficient data has been gathered to indicate that blockers such as unsupportive  management, senior sponsorship or low  resource availability are as much to blame for project failure as ineffective stakeholder management or poor communication.

Capture  all decisions

The only way to protect yourself is to ensure that you capture all decisions made in the project. In most cases  many of these decisions  will have been made by people above you. While you can influence decisions made by people under you. Get into the  habit  of building a dashboard early in the project and updating it each week with actuals.  Also consider using a  standard repeatable technique to analyse the health of your project.

Constrained resources

If you are in a project where resources are constrained, clearly outline the resources that you require to deliver the project in terms of time, scope, budget, risk  and  quality. If resources are pulled from your project, clearly articulate the affect of that in delivery terms and measure that to time delayed or cost added.

Risk and issues register

Operate  a strong risk and issue register,  ensure  it is both visible  and assessable so  your team can  actively participate in updating it.

Stop  the project

Always remember, cancelling the project is not always a failure. There can be many reasons why the project may no longer be desirable now. If you have done your job well, you can be really successful by ensuring a project does not continue to meander along, wasting time and money when there is no possibility of completing the project.

Organisational change management

Unfortunately, the same can’t be said when there are organisation change management issues.   While there are a  few project managers who feel their jurisdiction ends at the triple constraint, most now  understand the need to achieve the expected benefits from their projects.

So when is it fair to blame a project manager for poor implementation of a  project’s deliverables,  this is assuming that they were employed at the beginning of the project?

  1. If they didn’t perform good  stakeholder analysis during the project initiation stage as well as at regular intervals.
  2. If they turned a blind eye and deaf ear to factors that could impact value achievement
  3. If they didn’t insist on a clear communication strategy and progressive information sharing with relevant  stakeholder groups.
  4. If they didn’t engage influencers from key stakeholder groups throughout the project lifecycle.
  5. If the organisation management deliverables were not built into the project’s scope definition and work breakdown structure.

Assuming the project manager was appointed at the start of the project and had undertaken  all of the above, what are invalid reasons to blame the project manager  if the project failed?

  1. A lack of timely resource availability or commitment by the organisation
  2. Directives to the project manager to not engage certain stakeholder communities
  3. Ignorance by senior sponsors to management risks raised by the project team
  4. A management decision  that is too bitter a pill to swallow in spite of how much it has been sugar coated

Have any comments or stories that could help to expand this article?

Momo Apartments

MoMo apartments

MoMo apartments

MoMo apartments
MoMo apartments  –  Architect,  Allford Hall Monaghan Morris LLP

Zero defects are the primary battleground  between traditional and modern  construction methods. A relative  concept, zero defects is, however, a  target that the construction industry  has set for itself. Primary  considerations are structural stability  and keeping the water out. Proper  functioning of services, components,  fixtures, and fittings are essential.

Energy and sound performance are  also vital, as well as issues of safety,  access, and security. This is a  campaign which will be fought in  years to come… and in the meantime  here is another prefab  scheme  which feature’s in these  skirmishes.

Mobile Modular (MoMo) is a  research development project for a  relocatable system of mass housing  constructed from specially fabricated  shipping containers. This type of  system allows flats to be erected  speedily on short-life sites and to be  demounted and re-assembled in  different configurations on other sites  in the future.

The key objectives:

Remove MoMo apartments from a  site where housing has been provided  for 5 years.

Refurbish Each module at the  supplier’s yard or an alternative  temporary site.

Re-locate The apartments in any  new configuration to provide  decanting, short-term housing,  permanent apartments. This type of  system can also become a  permanent housing solution.

Originally commissioned by the  Peabody Trust, after feasibility stage, the team was invited to take the  project forward with their own  initiative. The team formed a  consortium with the aim of developing  a prototype to  demonstrate  the principles, and to market the  MoMo scheme as a one-stop shop  package to interested parties.

 

As seen on